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Abstract 
Four models were compared on repeated explicit memory 

(fragment cued recall) or implicit memory (fragment comple- 
tion) tasks (Hayman & Tulving, 1989a). In the experiments, 
when given explicit instructions to complete fragments with 
words from a just-studied list-the explicit condition-people 
showed a dependence relation between the first and the second 
fragment targeted at the same word. However, when subjects 
were just told to complete the (primed) fragments-the im- 
plicit condition-stochastic independence between the two 
fragments resulted. Three distributed models-CHARM, a com- 

INTRODUCTION 

One function of computational models is to allow us to 
analyze patterns of human data that are consistent but 
seem theoretically opaque. The patterns explored here 
are the findings that explicit-memory tasks show a de- 
pendence relation to one another, whereas, implicit- 
memory tasks show stochastic independence. Our ques- 
tion is: What do these dependencehndependence results 
mean about the human memory systems? 

The particular task that we shall investigate is repeated 
fragment completion. This is an especially interesting 
task from a modeling perspective because one of the 
strong points of interactive network models is that they 
are capable of specifying, in detail, a mechanism whereby 
pattern or fragment completion can be enacted. So the 
question that we ask here is not whether a model can 
do the task at all. It is, rather, whether it produces the 
pattern of contingencies on repeated testing that humans 
reveal in the implicit or in the explicit task. By analyzing 
the models that show the implicit pattern and those that 
produce the explicit pattern we can tease apart the fun- 
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petitive-learning model, and a back-propagation model pro- 
duced dependence, as in the explicit memory test. In contrast, 
a separate-trace model, MINERVA, showed independence, as in 
the implicit task. It was concluded that explicit memory is based 
on a highly interactive network that glues or binds together 
the features within the items, as do the first three models. The 
binding accounts for the dependence relation. Implicit memory 
appears to be based, instead, on separate noninteracting 
traces. 

damental characteristics of those two systems that give 
rise to the differing patterns of results. We shall briefly 
review the argument that there are separable memory 
systems. The modeling results presented here, though, 
go beyond the idea that the systems may be separable 
and begin to explore how they differ and what the un- 
devlyingprincaples in each of the systems might be. 

BACKGROUND: DIFFERENT MEMORY 
SYSTEMS? 
A number of theorists have proposed that there may be 
(at least) two functionally distinct memory systems some- 
times called episodic-or True Memory, and semantic- 
or Quasi Memory (Tulving, 1986), that may be differen- 
tially tapped by explicit and implicit tasks. The episodic 
system is assumed to store events that (1) have place and 
time knowledge, (2) have some personal meaning to the 
individual as having occurred to him or her, specifically, 
rather than just being world knowledge, ( 3 )  are inti- 
mately hooked up with a functional hippocampal mem- 
ory system, and, thus, susceptible to certain kinds of 
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amnesia, and ( 4 )  require conscious recollective pro- 
cesses for their encoding and retrieval. The Quasi Mem- 
ory system may show some plasticity, and, in particular, 
priming effects may manifest themselves, but there need 
be no conscious recollection associated with this system, 
or with implicit remembering. 

Evidence for two kinds of processing or systems has 
been reviewed by Richardson-Klavehn and Bjork (1988), 
and others. First, a number of variables (such as “level 
of processing,” or whether or not a subject generates, as 
compared to reads, a word) influence explicit tasks such 
as recall and recognition, but cause no differential effect 
on implicit tasks such as lexical decision, stem, or  frag- 
ment completion (e.g., Jacoby & Dallas, 1981; Graf, Man- 
dler, & Haden, 1982). Second, explicit tasks, like free 
recall, cued recall, and recognition, are selectively im- 
paired in amnesics as compared to normals or matched 
control patients; performance on the implicit tasks, such 
as primed fragment completion, stem completion and 
lexical decision is spared (Shimamura, 1986; Schacter, 
1987). The third line of evidence is contentious. It was 
initially thought that the tasks within a given system 
would show dependence with one another, whereas 
independence across systems would be found. Many 
experiments show that two classic explicit tasks-rec- 
ognition and recall-are dependent, such that the prob- 
ability of recall of a particular target is higher given the 
subject recognized it than had the subject failed to rec- 
ognize it. 

The problem with the initial interpretation of the 
meaning of dependence and independence comes from 
studies that flagrantly violate intuitions based on this kind 
of reasoning. Although implicit memory tasks have been 
shown to be independent of explicit memory tasks- 
fragment completion is independent of recognition 
(Tulving, Schacter, & Stark 1982jdifferent implicit tasks 
are also independent of one another. Witherspoon and 
Moscovitch (1989), for example, found that word iden- 
tification was independent of fragment completion even 
though both are presumably enacted by the same system. 
We are left in a quandary about what dependence and 
independence means. This situation was taken to its log- 
ical extreme by Hayman and Tulving (1989a), who con- 
ducted repeated fragment completion tests with exactly 
the same task and targets, using only different parts of 
the same words as cues. In the explicit memory version 
of the tasks they found dependence, but in the implicit 
version independence was found. 

We share Witherspoon and Moscovitch’s (1989) res- 
ervations about having to postulate separate systems for 
each and every test that is shown to be independent of 
some other. This seems implausible, especially when the 
tests are trivial variants of one another (e.g., both are 
fragment completion tests directed at one and the same 
target). 

Roediger, Weldon, and Challis (1989) have suggested 
that the transfer appropriate processing view may be 

called for. This approach relies on a careful assessment 
of the compatibility relations between encoding and test, 
and analyses of the processes involved. They note, how- 
ever, that the systems view a d  the transfer appropriate 
processing view may not, in fact, be at odds with one 
another, saying: “We must admit that there is no inherent 
reason that an approach specifying both memory systems 
and something like processing modes or procedures 
cannot be partially correct. Neural structures require 
processing for their operation, and procedures must be 
carried out by the brain. A theory specifying both struc- 
tural bases and processing assumptions is needed (An- 
derson, 1978), but those presently on the scene 
emphasize either structure to the relative neglect of pro- 
cessing assumptions (the systems approach) or process- 
ing assumption to the relative neglect of structure (our 
own approach)” (Roediger et al., 1989, p. 36). 

We take this third approach-specifying both the sys- 
tems and structure and the processes involved. Working 
models could not function otherwise. Before describing 
the models and their application to the implicit/explicit 
distinction, however, it is necessary to provide a few 
more details about the paradigm we examine and the 
experimental results. 

THE EXPERIMENTAL PARADIGM 

Hayman and Tulving (1989a) investigated the depen- 
dency relations in fragment completion and cued frag- 
ment recall in a series of four experiments. Typically, 
subjects were presented a sequence of words in a study 
list containing some words, such as AARDVARK, which 
would later be the primed targets. Later, subjects were 
given one of two tests-an implicit test, in which they 
were asked to complete fragments, such as A V L  -, 
or a cued-recall (i.e., explicit) test in which they were 
asked to recall the word from the list that contained the 
following letters: A V L - .  In both cases, there was a 
second test in which the subject was either given the 
same fragment a second time or a different complemen- 
tary fragment. So, for example, the second complemen- 
tary fragment for aardvark would be L -D- _RK. 

In the control cases, in which the exact same fragments 
were used on the second test, no matter what the instruc- 
tions to the subjects were, strong dependence between 
the first and second test was exhibited. This makes sense. 
If the tests are exactly the same then the only difference 
should be due to the noise of testing itself, including 
possible interfering effects of intervening items and pos- 
sible priming effects due to the first test. In the models, 
we need not implement these confounding factors. In 
the exact-repetition case, obviously, all models would 
show complete dependence. When fragments are not 
identical, those that have more letters in common should 
show more dependence than those without letters in 
common. The limiting case for showing minimal depen- 
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dence is no letters in common. The limiting case for 
maximal dependence is exact repetition of all letters. 

A number of researchers have pointed up potential 
problems with the repeated testing methodology (see 
Shimamura, 1985), as well as some solutions (Flexser, 
1981; Hayman & Tulving, 198917). To circumvent these 
problems, Hayman and Tulving (1989a) used a method 
of testing called the “reduction method” (Watkins & 
Todres, 1978) that compares a control list not involving 
repeated testing with the conditionalized list. It is de- 
signed to offset the effects of repeated testing. In the 
formal modeling such a remedy for the priming effects 
due to the test situation, will, of course, not be needed, 
since we do not alter the models when testing them. 

Hayman and Tulving’s (1989a) results were as follows: 
(1) In both the implicit- and the explicit-memory tasks, 
when the exact same fragment was repeated, depen- 
dence between the two tests was obtained. It would be 
cause for considerable concern had this not been the 
case, and the result is predicted by all models of memory. 
(2) In the different fragment condition, with the explicit- 
memory task, dependence was obtained. (3) In the im- 
plicit-memory conditions, in the different fragment con- 
dition, the results of the two tests were independent of 
one another. The challenge, then, is to say what kinds of 
systems give rise to the dependence seen in the explicit 
task and what kinds of systems can produce the inde- 
pendence seen in the implicit task. 

MODELS 

Three of the models we will report upon are “distrib- 
uted.” In these models the features representing the 
items are modified by one another by the storage mech- 
anisms in the postulated networks. One of the models 
(MINERVA, Hintzman, 1987) was a separate multiple-trace 
model. In this model, both the items and the features 
within the items are simply stored independently. 

In deciding on what representations to use for the 
fragments, we rediscovered the wheel several times. The 
gist of the results was the same for all four models so 
rather than reporting multiple simulations, these results 
are summarized here. First, we drew the features ran- 
domly with replacement to be in the first or the second 
fragment. Consider the case where 0.5 of the features 
are in fragment 1 and 0.5 are in fragment 2. If these are 
randomly selected, without respect for one another then 
we would expect that the two fragments will have 0.5 X 

0.5 = 0.25 features in common. The common subset of 
the features induces a positive correlation. We found that 
with this coding scheme for the fragments, all of the 
models we tested showed positive dependence. 

Second, we made the features in the two fragments 
mutually exclusive. If there were no overlap among the 
features in the two fragments to artifactually induce a 
correlation, then the intrinsic characteristics of the model 
should shine through. If the model was inherently in- 

dependent under fragment completion, then that inde- 
pendence was expected to show up when the fragments 
were mutually exclusive. If the mechanisms or connec- 
tions in the model itself induced some dependency then 
that too should be manifested. In our first attempts to 
make the features mutually exclusive, however, we ac- 
cidentally induced a negative tradeoff between the two 
fragments. We went through the item, feature by feature, 
flipping a computer-generated fair coin for each feature. 
If a feature was assigned to one fragment, the other 
fragment was given a value of zero on that feature. The 
problem with doing this is that there is considerable 
variability in flipping the coin (and in the underlying 
information content of each feature). If one fragment 
accidentally got 60%, rather than 50% of the features, 
then the other fragment necessarily got only 40%. Thus, 
fragments that were “good” fragments, i.e., had an above 
average number of features, were necessarily linked to 
“bad’ fragments, and this produces a negative correlation 
a priori. All of the models showed less dependence 
under these conditions than with independent feature 
sampling. Some of the models (MINERVA and backpro- 
pagation), under some parameter values, actually dem- 
onstrated a negative dependence relation under these 
conditions. Because the correlation or lack thereof was 
due to idiosyncrasies of the coding rather than to the 
intrinsic characteristics of the model, we decided that 
this scheme was not a fair test of the models. To dem- 
onstrate the intrinsic characteristics of the model, then, 
we settled on a mutually exclusive sampling scheme that 
minimizes the negative tradeoff described above. The 
scheme was extremely simple-the first half of the fea- 
tures comprised one fragment and the second half the 
other. 

CHARM Model 

The CHARM model was originally designed to address 
the question of how people associate, store, and retrieve 
events in True Memory system (Metcalfe, 1985, 1991, 
1992). Items, represented as multidimensional vectors, 
are associated by the operation of convolution, and are 
stored by being added into a composite memory trace, 
itself a vector, along with other such convolved pairs of 
items. In the simulation described below the items are 
autoassociated. At time of retrieval, the cue vector is 
correlated with the composite memory trace. This pro- 
duces a vector that is identified by being matched to 
every item in a lexicon. The best-matching item, as long 
as that item exceeds a lower criterion of goodness-of- 
match, is considered to be the item generated. An over- 
view of the model is shown in Figure 1. 

Method 

Lexicons of 100 vectors, each consisting of 93, 63, or 33 
features, which were numbers randomly sampled from 
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Figure 1. An overview of the CHARM model 

a truncated normal distribution centered around a value 
of 0, were constructed. Because of this sampling proce- 
dure, the items in the lexicon were statistically indepen- 
dent of one another and could be said to be 
psychological entities like unrelated words. The first 12 
items of the lexicon were autoassociated, by the opera- 
tion of convolution, and added into the composite mem- 
ory trace. 

The first cue was constructed for each of the 12 items 
by selecting the first half of the features to comprise the 
cue, and the remainder to be coded as zeros. These 
fragments were correlated with the composite memory 
trace and the retrieved item was matched to every item 
in the lexicon by taking the dot product to each. The 
criterion for saying that the resonance between the re- 
trieved item and the highest resonating lexical item was 
good enough for retrieval to be said to have occurred 
was varied from 0 to 0.2, 0.4, 0.6, 0.8, to 1. The item that 
had the highest dot product, as long as it was above the 
criterion for that particular run, was said to be the item 
that was given as the completion to the fragment. For 
the second test, the fragment cues were the last half of 
the features in the item, with the other elements being 
coded as zeros. 

Whether the simulation produced the correct result to 
the first and/or second fragment was tabulated in a two 
by two contingency table, from which the simple and 
conditional probabilities were computed. Each treatment 
combination was run through 100 independent runs, so 
the data points are each based on 1200 observations. 

Results 

The results are plotted in Figure 2 ,  which shows the 
conditional probability of correct completion of fragment 

8. 
A - 
4 7. 
0 .  
c 

6. 
E m 

't- 

+ 33 fea tures  . 
63  fea tures  . 

0 1 2 3 4 5 6 7 8 9 1  

p( f ragment  #2) 

Figure 2. The repeated fragments dependence relation in CHARM 

two given correct completion of fragment one on the 
ordinate, plotted against the simple probability of correct 
completion of fragment 1, on the abscissa. The diagonal 
indicates independence; anything above the diagonal in- 
dicates positive dependence; points falling in the area 
below the diagonal would indicate negative dependence. 
As can be seen from the figure, there was a considerable 
amount of dependence produced by the model. Depen- 
dence was also produced in the experimental situation, 
but only under explicit conditions, i.e., where subjects 
were told to complete the fragment with a just-studied 
word from the list. 

Discussion 

The reason the CHARM model, under autoassociation, 
predicts dependence on the two tasks is that every fea- 
ture is linked to every other feature, by the associative 
operation. When any feature is given as a cue or part of 
a cue at time of retrieval, it provokes signal terms from 
all the features in the initial representation, proportional 
to the absolute value of the cue feature. Since any feature 
produces a degraded representation of all of that item's 
features, a correlation among features is necessarily built 
into the autoassociative model. 

The fact that the encoding is distributed or scattered 
in CHARM such that all features are linked to all is at the 
base of this correlation. (The operation of convolution, 
itself, spreads or smears the values of the features in this 
distributed manner.) As such, we should find that other 
models that share or partially share this kind of interac- 
tive representational coding such that some or all of the 
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features are linked, bound, or connected to all of the 
other features, should also share the dependence rela- 
tion under conditions of repeated fragment completion, 
even in the case of mutually exclusive fragments. A par- 
ticularly clear case is given by the competitive-learning 
model. 

Competitive-Learning Model 

The origins of the competitive learning procedure go 
back to work by von der Malsburg (1973) and Grossberg 
(1970). Rumelhart and Zipser (1986) extended these pro- 
cedures, and provided corrections to problems in the 
original models. At heart, this type of model (see Fig. 3) 
consists of at least two layers of units connected by 
modifiable weight links. When a pattern of input units at 
the first layer is activated, units in the next layer “com- 
pete” for the privilege of responding to that particular 
pattern by inhibiting other units in the layer from be- 
coming activated. Only the winning unit is allowed to 
modify its links, and does so in a manner that makes it 
increasingly more responsive to that particular input 
pattern. 

Method 

A competitive-learning model was implemented, which 
consisted of two layers of units, an input and a category 
layer, which were completely interconnected by feed- 
forward connections. The weights of these connections 
were initially set to values selected randomly from a 
uniform distribution between 0 and 1, and normalized 
such that the sum of all weights feeding into each cate- 
gory unit was 1. Those weights were subsequently mod- 
ified through training. The model consisted of 100 input 
units and 63 category units. The 63 input items each 
contained 100 binary features, and were created at ran- 
dom; each feature had an equal probability of being 
assigned either a 1 or a 0. 

On each training trial the network was presented with 

Category Layer  

Input Layer  

111001 

Figure 3. An overview of the competitive-learning model 

a randomly selected (whole) item from the item set, i.e., 
the item’s pattern of features was activated at the input 
level. The category units computed a weighted sum of 
this activation based on the connection strength. The 
weights were modified according to the competitive 
learning algorithm (Rumelhart & Zipser, 1986): 

where wzJ is the weight link connecting the input unit i 
to the hidden uni t j ,  and g is the learning rate. Cz,k is 
equal to 1 if, in the stimulus pattern k ,  input unit i is 
active, and is equal to 0 otherwise. n k  is the total number 
of active input units in the stimulus pattern k. 

Strong lateral inhibition was assumed to operate at the 
category layer, such that only the most highly activated 
category unit was allowed to learn. Only the connections 
that fed to the category unit with the highest activation 
level (the “winner”) were modified: weights to active 
input units were strengthened, and weights to inactive 
input units were weakened. The extent of this modifi- 
cation is determined by the value of g, which was set to 
0.2 in these simulations. In addition, the activation of 
each category unit in the simulations reported below 
was multiplied by a unit-specific sensitivity parameter, 
also set initially to a random value selected from a uni- 
form distribution between 0 and 1. On each training 
trial, the sensitivity of the “winning” unit WdS reduced by 
a factor of 0.05, and the sensitivities of all ‘‘losing’’ units 
were increased (equivalently) by a factor necessary to 
keep the overall amount of sensitivity in the system con- 
stant. 

p(fragment #2) 

Figure 4. The repeated fragments dependence relation in the com- 
petitive network. 
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To test whether the network had learned to classify 
the whole items, each item was presented in the same 
manner as for training, except that no weight modifica- 
tions were allowed. A given item was deemed to be 
“correctly identified” on presentation if the winning unit 
did not win the competition for any other pattern, i.e., if 
it responded exclusively to that particular item. When 
the network passed a criterion performance level of 66% 
correct on the whole items, it was tested for fragment 
completion. 

The first 50 features of each item were present in the 
first fragment of that item, and features 51 through 100 
were assigned a 0. Similarly, the second 50 features of 
each item were present in the second fragment of that 
item, while features 1 through 50 were assigned a 0. On 
presentation of each fragment, the “winning” ‘category 
unit was noted. A correct completion was tallied if this 
unit was the same one that coded exclusively for the 
whole item from which the fragment was constructed. 
An incorrect completion was recorded otherwise (i.e., if 
a different category unit responded most strongly to the 
fragment). The results from the two exclusive fragments 
of each of the 63 items were tabulated in a two by two 
contingency table from which the results presented in 
Figure 4 were computed. The entire procedure was rep- 
licated 100 times, giving 100 simulation data points, each 
based upon 63 observations. 

Results 

As is shown in Figure 4 the probability of correctly com- 
pleting the second fragment was dependent on the suc- 
cessful completion of the first. The probability of 
successful completion of the second fragment, given suc- 
cessful completion of the first, was higher than the prob- 
ability of completing the second overall. 

Discussion 

The competitive learning algorithm forces all of the 
weights that connect a winning category unit to active 
input units to be strengthened, and therefore these 
weights are linked or bound together. They all rise (or 
fall) together (though not necessarily by the same quan- 
tity). This has two implications. First, it makes the win- 
ning category unit more likely to win the competition 
the next time that same pattern is presented. This is what 
allows category units to become “dedicated’ to a single 
input pattern, and is indeed at the heart of competitive 
learning. Second, it produces the dependency seen here 
with both the independent and the mutually exclusive 
fragments. This is because a dedicated category unit that 
responds most strongly to one specific pattern will also 
respond strongly to both exclusive fragments of that 
pattern, since all connecting weights used by the pattern 
as a whole have been strengthened together. 

An Autoassociative Back Propagation Model 

In this section, we explore a particular nonlinear 
model-the back propagation autoassociator (Rumelhart, 
Hinton & Williams, 1986; Cottrell, Munro & Zipser, 1989, 
see Fig. 5). The autoassociative network is trained to 
reproduce the input pattern at the output layer. In so 
doing, it must represent the input in some fashion as a 
pattern of activation at the hidden layer. The particular 
representation used depends on the weights on the links. 
Thus, learning in such networks corresponds to setting 
these weights. They are learned via an error-correction 
procedure known as the generalized delta rule (Rumel- 
hart et al., 1986). Activity is propagated as follows: First, 
the units of the network compute a weighted sum of the 
activities of the units in the previous layer: 

N 

net inputi = 2 w,,, activation,, (2) 

where activationi = input, i f j  is an input, and wij is the 
weight from unitj to unit i. Next, a nonlinear “squashing” 
function is applied to obtain the unit’s activity level: 

j= 1 

activationi = 2[1/(1 + e-’Iet i”p”5)>l - 1 (3 1 
The network is initialized with small random weights. 
Training proceeds by presenting input vectors, propa- 
gating activity through the network using the above equa- 
tions, producing an activity vector at the output level. 
This is compared to a desired output vector, the “teaching 
signal,” and an error is computed. The weights are then 
changed in order to reduce the error at the output level. 
The particular form of the weight changing rule is 

AwIJ = -q 6, activation, ( 4 )  

where q is a learning rate, 6, is the error in the output 
attributable to unit i, and activation, is as above. Thus, 
the weights are set according to the correlation between 
the error attributable to the unit at one end, and the 
activity of the unit at the other end. When this equation 
is applied to the input-to-hidden weights, the activation, 
terms are simply the features of the input pattern, and 
the A, terms are the errors of the hidden units. Thus at 
the input level, features of the input will be associated 
with a particular unit at the hidden layer in proportion 
to the error of that unit on that pattern. To determine 
whether a particular output is a “hit” or not, a lexicon of 
patterns was used. The criterion for whether an output 
pattern matched a lexical item was that the output vector 
be within half of the distance from that lexical item to 
the closest other lexical item in the set. 

Method 

For each trial of the model, a lexicon of 100 vectors, 
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Figure 5. A n  overview of an autoassociative back propagation 
model. 

each consisting of 64 features, was constructed. The fea- 
tures were determined by a fair coin flip to be either - 1 
or 1. Thus the items were statistically independent of 
one another. The model had 50 hidden units, and a 
learning rate (q) of 0.1 was used. All 100 lexical items 
were presented to the model, with the desired output 
patterns (the teaching signal) being identical to the input 
patterns. The patterns were presented to the model one 
at a time, the error was computed, and the weights were 
changed on every presentation. Each simulation run con- 
sisted of 10 passes (or epochs) through all 100 patterns. 

Two mutually exclusive fragments for each pattern 
were constructed such that the first 32 features were 
included in the fragments for test 1; the second 32 were 
included in the fragments for test 2 .  These fragments 
were presented to the trained network without changing 
the weights. Using the criterion described above, a hit 
was recorded if the output pattern was within the proper 
radius of the lexical item from which the fragment was 
derived. Each trial of 100 new patterns and new random 
initial weights was repeated 100 times, resulting in 10,000 
unique observations. 

Results 

The results from the two tests were tabulated in a two 
by two contingency table, from which the simple and 
conditional probabilities were computed. As shown in 
Figure 6, the model shows a pattern of positive depen- 
dence. 

Discussion 

With the back propagation model, the individual features 
of the patterns are linked, internally, via the storage rule. 
As expressed in Eq. (3) ,  weights from the features (of 
the same sign) of a pattern will tend to rise or  fall 

0 1 2 3 4 5 6 7 8 9 1  

p( f ragment  “ 2 )  

Figure 6. The repeated fragments dependence relation in the back 
propagation model. 

together proportional to the hidden unit’s error. That is, 
the Ai term is shared between all of the weight changes 
to a particular unit. Thus if one feature tends to turn on 
a hidden unit, so will another feature from the same 
pattern. Thus the hidden units “bind’ the features of a 
pattern together. Similarly, at the hidden-to-output level, 
hidden units that are correlated with the error of an 
output unit will change their weights to that output unit 
together, so that all of the hidden units responsive to an 
input pattern will be bound together for that output 
feature. 

A Noninteractive Separate Trace Model: 
MINERVA 

MINERVA (Hintzman, 1986, 1987) is a multiple-trace 
model of human memory (see Fig. 7). In MINERVA every- 
thing-traces, and features within t r a c e s i s  separate, 
and as such, the model is noninteractive. This makes it 
a particularly instructive model, by way of contrast to the 
three previous models. 

Each event is stored as a vector of n features in a 
separate trace in secondary long-term memory (SM). 
Each feature is represented as either + 1, - 1, or 0. Dur- 
ing encoding, each feature of the event vector is stored 
in SM with probability L,  the learning rate. If a feature is 
not stored, a zero is stored as that feature in the SM 
trace. 

Retrieval is simulated by resonating a retrieval cue with 
all SM traces. This produces a single composite “echo” 
vector. Since this echo is not the same as the original 
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Figure 7. An overview of the MINERVA model 

patterns, nor even as the SM traces themselves, it is 
necessary to store all the complete patterns in a lexicon 
somewhere outside SM. On presentation of a probe, all 
SM traces (including the missing parts that are not given 
in the retrieval environment) are assumed to be activated 
to an extent determined by their similarity to the probe. 
This similarity, S, is determined by a method similar to 
that used when computing a Pearson r, except that fea- 
tures that have a value of 0 in either the trace or the 
probe do not contribute: 

N 

s, = I=P,T, , /N,  ( 5 )  
/ = 1  

where PI is the value of featurej in the probe, T,, is the 
value of featurej  in trace i, and N, is the number of 
features that are either a 1 or a -1 in either the trace or 
the probe. The similarity value is then used to compute 
the activation of each trace: 

A, = S? ( 6 )  

Each trace, weighted by its activation value, is summed 
into the echo vector. The echo is then matched to every 
item in a lexicon, and the best match (determined by 
computing a true Pearson r )  is said to be the item pro- 
duced. A modification of the method Hintzman (1987) 
used for recall can also be used for the task of fragment 
completion, as illustrated in the simulations that follow. 

1 4  - . 

.9 I 

+ L=0.2 

0 L =  0.6 
v L=1.0  

- .  . . . . . . . . . 
0 .1 .2 .3 .4 .5 .6 .7 .I3 .9 

p(fragment #2) 

Figure 8. The repeated fragments dependence relation in MINERVA 

Method 

A lexicon of 200 items (vectors), each with 20 features, 
was created with each feature having an equal probability 
of being either +1, -1, or 0, following the representa- 
tional coding used by Hintzman (1987). One hundred of 
these patterns were stored in SM, with a learning rate 
( L )  of 0.2, 0.6, or 1.0. 

The model was tested on two mutually exclusive frag- 
ments of each pattern, with an equal number of features 
in each fragment. The first 10 features of each original 
pattern were assigned to the first fragment of that pattern, 
while features 11 through 20 were assigned to the second 
fragment. Features of the original pattern that were not 
present in the fragment were designated as 0. Each frag- 
ment was presented as a probe that was compared to 
the 100 stored vectors in SM, and the complete resulting 
echo was correlated with each of the 200 patterns in the 
lexicon. If the pattern giving the highest r was the same 
one used to generate the fragment, then a correct com- 
pletion was tallied. This procedure was replicated 50 
times, and the simple and conditional probabilities of 
successful completion were computed bidirectionally 
[i.e., both p(fragment #2lfragment #1) and p(fragment 
#Ilfragment #2) for each pair of fragments]. Thus, each 
of the 100 (50 X 2) data points is based on 100 simulated 
observations. 

Results 

As is shown in Figure 8, MINERVA produces indepen- 
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dence. This is just the right pattern to account for the 
implicit memory data. 

CONCLUSION 

The three distributed/interactive models produce the 
dependence results, as shown in the explicit memory 
data, whereas the noninteractive separate-trace model 
MINERVA produces the independence results, as shown 
in the implicit memory data. The critical difference be- 
tween the two kinds of models is that those producing 
dependence have some inherent mechanism that fuses 
or glues the elements together in the items that are 
processed. The separate trace model does not have this 
characteristic. In that model the features are simply lined 
up in a vector but there is no operation or  modification 
that alters any of them or the connections to them (at 
storage) as a function of the values of the others. They 
are inert with respect to one another-noninteracting- 
and, as a result, the features within the separate-trace 
model maintain their functional (and statistical!) inde- 
pendence. Those models that glue, fuse, or  bind together 
the diverse elements of the events presented to them to 
form a coherent whole produce the dependence findings 
shown by human subjects under explicit memory in- 
structions. Those models that do not so bind the features 
together show independence, as is shown in the human 
implicit-memory data. 

Much discussion has been devoted to the idea that a 
critical distinction between explicit and the implicit 
memory tasks is the role played by consciousness, or 
attention. The episodic system is assumed to require 
consciousness, and to be distinguished from nonepisodic 
(or Quasi Memory) system on that basis. But we may still 
ask, what does conscious attention do, or what is the 
functional difference between systems that do or  do not 
require it? If we subscribe to the idea that involvement 
of consciousness is a distinguishing characteristic of the 
two systems (and that the models exhibit a critical func- 
tional distinction) then we may say that conscious atten- 
tion is a prerequisite for that which distinguishes the 
models: the binding function. 

Within a somewhat different research framework, 
Treisman and Gelade (1980) also see consciousness or  
attention as a necessary gateway into the “true” memory 
system, although certainly some processing can be done 
without it. According to Treisman’s view, prior to focused 
attention the various features in the perceptual world are 
free floating rather than integrated-the supporting evi- 
dence being the discovery of illusoy conjunctions. For 
example, given a blue circle and a red square presented 
very quickly, a person might report seeing a red circle. 
The role of conscious attention, then, is to fuse the ele- 
men& in an event together correctly. 

We did not set out to find a connection between the 

pletion as described by Hayman and Tulving and the 
work of Treisman and her colleagues on illusory con- 
junctions. Nevertheless, the manner in which the models 
explain the implicit-memory and the explicit-memory 
data makes sense in terms of these other ideas, and offers 
support for them. As we have shown, what the distributed 
models do (accounting for the explicit memory data), 
that the separate-trace model does not do (and hence 
accounts for the implicit memory data), is fuse the epi- 
sodically presented features of events together to form a 
cohesive whole-a whole in which the parts will and do, 
if tested, exhibit interdependence. 
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